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Abstract

In this work, switching systems are named endogenous when their switching pattern
is controllable. Linear endogenous switching systems can be considered as a particular
class of bilinear control systems. The key idea is that both types of systems are
equivalent to polysystems i.e. to systems whose flow is piecewise smooth. The reachable
set of a linear endogenous switching system can be studied consequently. The main
result is that, in general, it has the structure of a semigroup, even when the Lie
algebra rank condition is satisfied since the logic inputs cannot reverse the direction
of the flow. The adaptation of existing controllability criteria for bilinear systems is
straightforward.

Keywords: Linear switching systems, bilinear control systems, polysystems, reachability
semigroups, controllability.

1 Introduction

Motivated by the need of dealing with physical systems that exhibit a more complicated
behavior than those normally described by classical continuous and discrete time domains,
hybrid systems are getting very popular nowadays. In particular, there has been a relevant
interest in the analysis and synthesis of so-called switching systems [10] intended as the
simplest class of hybrid systems, as the integral curves of such systems retain continuity
although not global smoothness. They can be modeled as a family of plants, all defined in
the same domain and such that at each time instant one and only one of them is active,
together with a mechanism to govern the switching. This is equivalent to say that the

∗Work done while the author was with the Division of Optimization and Systems Theory, Royal Institute
of Technology, Stockholm, Sweden and supported by the Swedish Foundation for Strategic Research through
the Center for Autonomous Systems at KTH



vector field that drives the flow of the system is allowed to change in a prescribed family
according to a given switching strategy. We concentrate here on a particular class of switching
systems: we assume that all modes are linear and that we have complete control over the
switching mechanism. We call this class of systems linear endogenous switching systems. The
assumption of “endogenousness” is crucial as it allows to consider the switching mechanism
as a particular control mechanism. Having control parameters is a prerequisite condition to
obtain density properties of the trajectories [16] in the reachable set and is not verified when
the switching between modes is governed by switching surfaces (we call these exogenous
switching systems). In this last case, the flow is simply a piecewise smooth ODE, not a
control system.

Most of the literature on switching systems has focused on stability problems [2, 5, 1]
for the exogenous switching case. Our intention here is to give a characterization of the
reachable set of linear endogenous switching systems by relating them to some “classical”
work concerning bilinear systems. The key notion is that of polysystem, a term used since
the seventies [11] to indicate the piecewise smooth approximation of a bilinear system. The
suggestion is that switching systems behave like particular types of polysystems and therefore
the analogy polysystems - bilinear systems can be used to study controllability properties of
switching systems. The polysystem obtained from the linear endogenous switching system
is called SPC polysystem i.e. scalar positive polysystem. It looks like a driftless bilinear
control system with control inputs ui ∈ {0, 1} (positive) such that for all times

∑m
i=1 ui =

1 (scalar). As a consequence, the trajectories of each mode of the family can flow only
along its forward semiorbit. Therefore, unlike driftless bilinear systems, the reachable set
of an endogenous switching system has generally only a semigroup structure and the Lie
algebra rank condition guarantees only accessibility, not controllability. The formalism we
put forward enables the use of the existing Lie algebraic controllability tools developed for
bilinear systems (exhaustively surveyed in [8, 13]) to the reachability of linear endogenous
switching systems. As an example, the case of a family of switching vector fields living on
semisimple Lie algebras is analyzed in detail.

2 Control systems, polysystems and switching systems

In this Section we review the concept of polysystem and use it to relate driftless bilinear
control systems to switching systems with controllable logic.

2.1 Bilinear control systems and polysystems

A driftless bilinear control system evolving on a manifold M is expressed as:

ẋ = F(x, u) =
m∑

i=1

uiAix x ∈ M (1)

where Aix are smooth vector fields, Ai ∈ Mn(R), u = (u1, . . . , um) is a control input and
belongs to the space U of all bounded measurable maps defined on any finite interval of the
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real line of the form [0, T ], T ≥ 0.

u : [0, T ] → U ⊆ Rm

The term polysystem has been used since the seventies [11] to indicate a control system
whose inputs are piecewise-constant.

Definition 2.1 A dynamical polysystem on a manifold M is a family

Fpc = {F(·, u)|u ∈ Upc} (2)

of smooth vector fields depending on a piecewise constant parameter u called input.

Upc is a subclass of the admissible functions Upc ⊂ U such that u : [0, T ] → U is piecewise
constant. The trajectories of a polysystem are piecewise smooth curves γ : [0, T ] → M such
that, for some partitioning 0 = θ0 ≤ θ1 ≤ . . . ≤ θk = T of [0, T ], the restriction of γ to any
[θi, θi+1] is a trajectory of some vector field from Fpc. Under some technical assumptions,
a control system like (1) can be identified with a polysystem Fpc. The technicalities regard
the Lebesgue measurability and the local boundedness of the input functions u(·) ∈ U and
are formalized by Sussmann [15] as:

I. smoothness of the vector fields of Fpc

II. U being a metric space.

III. continuity in both x and u of the components of the vector fields together with their
derivatives of all orders in x.

If one restricts the set of admissible control inputs U to the space of piecewise constant
functions Upc, then the trajectories of a polysystem coincide with the trajectories of a control
system [11]. Actually, the measurability properties of the input u hold if u ∈ U is the limit
almost everywhere of a sequence of piecewise constant functions. This is, in words, what
is normally called the Approximation lemma that expands the results on local existence
and uniqueness of the solution of ordinary differential equations to more general differential
equations depending on parameters, like the control system (1), see [8]. Therefore, all the
controllability/accessibility criteria that hold for control systems have an equivalent formu-
lation in terms of polysystems with piecewise constant inputs.

The space of pairs (ui, ti) ∈ U×R+ can be considered as a semigroup under the operation
of concatenation “∗”. If u1, u2 ∈ U , ui(·) : [0, ti] → U and ti ≥ 0, then the concatenation

u1 ∗ u2(·) : [0, t1 + t2] → U such that (3)

u1 ∗ u2(t) = (u1, t1) ∗ (u2, t2) =

{
u2(t) t ∈ [0, t2]
u1(t) t ∈ (t2, t1 + t2]

is also in U . Call U∗ the concatenation semigroup (or Upc∗ for concatenations of piecewise
constant input functions). U∗ is also called control semigroup. The concatenation rule ∗
constitutes the multiplicative operation of the semigroup. The “semi” property derives here
from the limitation to positive time intervals. This implies that the resulting subset is closed
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with respect to the multiplication rule but does not admit an inverse. Under some regularity
assumptions, like finite number of switching in finite time, the set of piecewise constant
inputs Upc∗ is then a subsemigroup of U∗.

Call (u, t)∗ the concatenated sequence of (u1, t1), (u2, t2), . . . , (uk, tk):

(u, t)∗ = (u1, t1) ∗ (u2, t2) ∗ . . . ∗ (uk, tk), u = (u1, u2, . . . , uk), t = (t1, t2, . . . , tk)

An autonomous control system is an action Φ of the semigroup U∗ (or Upc∗) on M giving the
integral curves of the system. In fact, the action

Φ : U∗ ×M → M (4)

((u, t)∗, x0) 7→ Φ((u, t)∗, x0)

maps U∗ into the semigroup T n of one-to-one continuous homeomorphisms from M to M
having flow composition as semigroup operation:

Φ((u, t)∗, x0) = Φ((u1, t1), Φ((u2, t2), Φ(. . . Φ((uk, tk), x0))))

The image of U∗ under the map Φ is in general a subsemigroup of T n For a generic nonlinear
system, Φ(·) does not have a closed form expression. However, it has for a bilinear system
like (1) when ui ∈ Upc and it is expressed by means of a product of exponentials.

2.2 SPC polysystem

The rule ∗ will be used in the following to decompose the flow of a polysystem depending on
an m-dimensional input vector u into the concatenation of m “elementary” flows depending
on a single parameter ui. If the original nonlinear system is linear in the controls, in Upc∗ the
concatenation idea can be pushed further: ui(t) ∈ Upc is defined in [0, ti] and has (constant)
value νi ∈ U if and only if ui(t) ∈ {0, 1} and the (time) support is [0, νi ti]. Since in general
νi ≷ 0 then νiti ∈ R which is not satisfactory if our aim is to have trajectories on R+ with a
proper order relation on it. To fix this we can apply a “cut-off” map before the concatenation
operation, limiting the restrained set U to the positive quadrant of Rm. These requirements
are described in the following in terms of a cascade of maps in input space.

Consider an interval, without loss of generality [0, τ ], in which the input u ∈ Upc remains
constant. Since U ∈ Rm, call ei the i-th element of the standard basis of Rm. In [0, τ ], the
first map we apply “ S(·) ” is meant to decompose u = [u1 u2 . . . ui . . . um]T , ui = 〈u, ei〉, into
the sequence of m inputs νi depending on a single parameter: νi = [0 0 . . . ui . . . 0]T .

• sequentialization S : transforms an m-dimensional input into a sequence of m scalar
inputs along each element ei of the standard basis of Rm

S : Upc → Upc1 × Upc2 × . . .× Upcm (5)

u =


u1

u2
...

um

 7→


u1 0 0
0 u2 0
...

. . .
...

0 0 um

 =
[
〈u, e1〉e1 . . . 〈u, em〉em

]
=

[
ν1 . . . νm

]
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where 〈·, ·〉 is the inner product in Rm. The need of moving only along the positive direction
of the orbit of each vector field means we have to use only positive controls, which are selected
by the “cut-off” map “ T (·) ”

• truncation T : to each νi apply the following:

T : Upci
→ U+

pci
=

{
νi : [0, ti] → U+ = U ∩ Rm+

}
νi = 〈u, ei〉ei = uiei 7→ = 〈u(ui > 0), ei〉ei = ui(ui > 0)ei

where u(v > 0) = u if v > 0 and 0 otherwise. If the system is linear in the control and
u = const then its integral is linear in both u and time. Restricting the input to take values
in {0, 1}, the same integral curve is obtained by altering the time support. Call “ M(·) ” such
a map (that “flattens” all the inputs to 1 by modulating with respect to the time support):

• modulation in the time support M : call Vi = {0, ei}

M : U+
pci
× R+ → Vi × R+

(νi(ui > 0), t) = (ui(ui > 0)ei, t) 7→ (ei, ui(ui > 0)t)

To the sequence obtained by the previous maps we can apply the pairwise operation of
Section 2.1:

• concatenation ∗ :

∗ :
(
Vi × R+

)
×

(
Vj × R+

)
→ (Vi × Vj)× R+ = {0, ei, ej} × R+

(ei, ui(ui > 0)ti), (ej, uj(uj > 0)tj) 7→

{
ej t ∈ [0, uj(uj > 0)tj)

ei t ∈ [uj(uj > 0)tj, uj(uj > 0)tj + ui(ui > 0)ti)

For sake of conciseness, we call the composition of the four maps above (transforming the
control in scalar and positive unitary) the SPC map “~”

~ , ∗ ◦M ◦ T ◦ S

Calling V , {0, e1, e2, . . . , em}, in correspondence of a control input u ∈ Upc of constant value
in [0, τ ] we have the following piecewise constant input (u, τ)~ in [0,

∑m
i=1 ui(ui > 0)τ ]:

~ : Upc × R+ → V × R+ (6)

(u, τ) 7→


em t ∈ [0, um(um > 0)τ)

em−1 t ∈ [um(um > 0)τ, um(um > 0)τ + um−1(um−1 > 0)τ)
...

e1 t ∈ [
∑m

i=2 ui(ui > 0)τ,
∑m

i=1 ui(ui > 0)τ ]

= (e1, , u1(u1 > 0)τ) ∗ (e2, , u2(u2 > 0)τ) ∗ . . . ∗ (em, , um(um > 0)τ)

= (u, τ)~
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The order in which the inputs νi appear depend on the sequentialization (5). However, since
the underlying space Rm commutes, any order is equivalent in ~. This is true only in the
input space, when the flow action (4) is applied, the commutativity depends on the vector
fields of F .

In exactly the same way as in Section 2.1, the map ∗ can be used to concatenate pieces
of SPC inputs.

Proposition 2.1 The map ~ preserves the structure of semigroup of the concatenated input
space Upc∗.

Proof Associativity of the concatenation ∗ is maintained by ~ as can be verified by the
straightforward computation:(

(u1, τ 1)~ ∗ (u2, τ 2)~

)
∗ (u3, τ 3)~ = (u1, τ 1)~ ∗

(
(u2, τ 2)~ ∗ (u3, τ 3)~

)
2

The space of admissible inputs is

Vsp =

{
u = (u1, u2, . . . , um) | ui ∈ {0, 1} and

m∑
i=1

ui = 1

}
(7)

The difference with respect to a control set of bang-bang type like

Vs =

{
u = (u1, u2, . . . , um) | ui ∈ {−1, 0, 1} and

m∑
i=1

|ui| = 1

}
(8)

is that the negative values of the input are missing because of the truncation map mentioned
above. The most immediate consequence is that, since the time span is R+, the integral
curve of the polysystem

Φ : Vsp ×M → M (9)

((u, τ)~, x0) 7→ Φ ((u, τ)~, x0)

are forced to move only in the “positive direction” of the vector fields. Each piece of flow
corresponding to some negative input disappear i.e. it is mapped by Φ to the neutral element
of the flow composition:

Φ((0, t), x0) = Φ((1, 0), x0) = x0

We call the polysystem under the concatenation action “~” an SPC polysystem i.e. polysys-
tem with scalar positive (unitary) controls.

Definition 2.2 The SPC polysystem Fsp associated with the bilinear system (1) is a dy-
namical polysystem whose input u takes values in Vsp:

Fsp = {F(·, u)|u ∈ Vsp} (10)
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2.3 Switching systems

Unlike hybrid systems, where the trajectories are allowed to have discontinuous jumps due
to some change in either the continuous or the discrete dynamics of the system, the term
switching system is used to describe systems in which the change of some operative mode
maintains the continuity of the flow of the solution even though not its smoothness. A number
of different multi-modal systems can be classified as switching systems. See [5, 2, 17, 18]
for some examples of formulations. The bottom line of all the different formulations is that
a switching system is composed of a family of different (smooth) dynamic modes such that
the switching pattern gives continuous, piecewise smooth trajectories. Moreover, we assume
that one and only one mode is active at each time instant.

The different switching schemes can be classified in the two categories: endogenous switch-
ing (or controlled switching or switching-on-time) and exogenous switching (or autonomous
switching or switching-on-state). The endogenous switching is the simplest of the two because
it involves only changes in the tangent space (the switching from one element to another one
of the family of vector fields can be decided arbitrarily as well as the instant of switching)
without need to check what happens on the flow of the solution. The exogenous switching
is more complicated: in fact it requires to know exactly the integral curves of the system in
order to decide when to pass from a dynamic mode to another one and can be thought of as
a feedback loop in which the switching logic is governed by a partition of the configuration
space. Similarly, the endogenous scheme can be thought of as the open loop version of the
same system for a special class of control inputs.

The following definition is on the integral curves of a switching system and holds regard-
less of the switching scheme used.

Definition 2.3 A switching system on M is a collection of smooth vector fields Fsw =
{Xi|i ∈ K}, with K some index set, characterized by integral curves γ : [0, T ] → M that are
continuous and piecewise smooth i.e. they admit a partition 0 = θ0 ≤ θ1 ≤ . . . ≤ θk = T
of [0, T ] such that the restriction of γ to the open interval (θi, θi+1) is differentiable and
γ̇ = Xi(γ(t)) for some i ∈ K.

In the following, we will consider only endogenous switching systems.

2.4 Transition matrix Lie group of a bilinear systems on Rn \ {0}
This paragraph is only meant to enable us to use the terminology of group (of diffeomor-
phisms) for the reachable set of a bilinear system with inputs in Upc or in Vs (as opposite to
the weaker structure of semigroup mentioned above).

The class of bilinear systems (and more in general of affine in control systems [9]) lives on
homogeneous spaces that are subordinated to a Lie group action. In particular, if M = Rn

0 =
Rn \ {0} (we consider the punctured euclidean space as the origin is an isolated equilibrium
point), the group of automorphisms of Rn, GL+

n (R) (the connected component of GLn(R)
containing the identity) defines a linear action on it:

θg(x) = gx g ∈ GL+
n (R), x ∈ Rn

0
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The vector fields of F : Aix, Ai ∈ gln can be lifted for example to right invariant vector
fields Aig on TgGLn(R) for each g ∈ GL+

n (R). For the bilinear system (1), a necessary and
sufficient condition for controllability in Rn

0 is the transitivity of the action of the group of
automorphisms for all x0 ∈ Rn

0 , see [4]. If Lie(F) is a proper subgroup of gln the isotropy
subgroup H = {g ∈ G | θg(x) = x} is nontrivial and F can be lifted to GLn/H. In the
following we consider G = GLn/H and g the Lie algebra of G. The infinitesimal generators
of the matrix representation of g are the Ai. The transitivity property can be formulated in
terms of the well-known Lie algebraic rank condition (LARC)

rank (Lie(Ai)) = dimGx = n x ∈ Rn
0

Call Γ the family of vector fields of F lifted to G. To the bilinear system (1) we can associate
a matrix bilinear system having the right invariant representation:

ġ(t) =
m∑

i=1

ui(t)Aig(t) g ∈ G u ∈ U (11)

g(0) = e

The matrix g is normally called the transition matrix of x and it represents the evolution of
the system (1) from n independent initial conditions.

If the system has a drift, the LARC is only a necessary condition for controllability.

2.5 The SPC polysystem of a bilinear system

Consider the bilinear system (1). Locally its solution can be expressed via the polysystem
in terms of a single exponential. In [0, τ ], applying the constant input u = [u1 . . . um] =
[〈u, e1〉 . . . 〈u, em〉]:

x(τ) = Φ ((u, τ), x0) = e
∑m

i=1 Aiuiτx0 (12)

The limitation to positive unitary controls is such that for each ui = 〈u, ei〉, i = 1, . . . ,m,
only 〈u(ui > 0), ei〉 is considered. Associating each element ei of the standard basis of Rm

with the infinitesimal generator Ai ∈ g, the exponential map from g to G induces a transition
matrix corresponding to a one-parameter flow along Ai

Φ ((ui, τ), e) = Φ ((ei, 〈u(ui > 0), ei〉τ), e) : R+ → G

t 7→ eAit = eAiui(ui>0)τ

which is a one-parameter subsemigroup of G (“half”orbit). The truncated single exponential
(12) is then

x(τ) = e
∑m

i=1 Aitix0 (13)

where ti = ui(ui > 0)τ ≥ 0, i = 1, . . . ,m. When the input concatenation operation ~ is
applied to (1)

x(t) = Φ ((u, τ)~, x0) (14)

= Φ ((e1, t1), Φ ((e2, t2), . . . Φ ((em, tm)))) x0 t =
m∑

i=1

ui(ui > 0)τ
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The flow concatenation (14) admits an explicit expression in terms of product of exponentials:

x(t) = eA1t1eA2t2 . . . eAmtmx0 (15)

For the matrix system (11), both the exponentials (12) and (15) represent integral curves
of (11) starting from the origin of G called canonical coordinates of the first and second
kind respectively. In practice, the concatenation is nothing but a way to transform any
smooth trajectory into an arcwise connected one (which is “more evidently” accessible). For
trajectories that span the whole g the corresponding concatenation gives a so-called normally
accessible trajectory. The order of application here follows the rule (3), but such choice is
completely arbitrary, unless a switching pattern is prespecified. The change of order in the
product of exponentials can be obtained by repeated application of the Campbell-Baker-
Hausdorff formula (expressing how much the brackets fail to commute over the exponential),
see [3].

2.6 Linear endogenous switching systems and SPC polysystems

Recall that in the endogenous switching case one assumes to have complete control over:

I. time of switch

II. switching pattern

After all of the previous discussion, the following theorem is almost a tautology.

Theorem 2.1 Consider an endogenous switching system Fsw on M given by the same family
of linear vector fields of the drift-free bilinear system (1): Xi(x) = Aix, i = 1, . . . ,m, Ai ∈
Mn(R). The trajectories of such switching system coincide with those of the SPC polysystem
Fsp obtained from (1).

Proof The trajectories of the linear switching system with{
switching pattern k1 → k2 → . . . → kp

switches at times tk1 , tk2 , . . . , tkp ∈ R+
(16)

initialized at x0 ∈ M look like composition of exponentials:

x(t) = eAk1
tk1eAk2

tk2 . . . eAkp tkp x0 t = tk1 + tk2 + . . . tkp ≥ 0

Since the switching system and the SPC polysystem have the same family of generators, any
of the sequences (16) can be replied by the SPC polysystem via a suitable sequence of ∗ and
~ operations. The converse implication follows from the same argument as both sequences
k1 → k2 → . . . → kp and tk1 , tk2 , . . . , tkp are controllable and can be chosen so as to match
a given input concatenation pattern in the bilinear system. 2
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3 Reachability semigroups for an SPC polysystem

Given x0 ∈ M , let us call RF(x0, T ) the reachable set from x0 at time T > 0 for the system
F :

RF(x0, T ) = {x ∈ M s.t. ∃ an input in U u : [0, T ] → U such that the
evolution of (1) satisfies x(0) = x0 and x(T ) = x}

and the reachable set from x0 in time not greater than T

RF(x0, ≤ T ) = ∪0≤t≤TRF(x0, t)

The system F is small-time locally controllable at x0 if RF(x0, ≤ T ) contains a non-empty
open subset of M for all T ≥ 0 and for all neighborhoods of x0 and x0 belongs to the interior
of this subset. The existence of a nonempty interior in M is referred to as accessibility
property and only for drift-free systems it corresponds to controllability.

Global controllability from x0 is equivalent to have

RF(x0) = ∪0≤t≤∞RF(x0, t) = M

The system is said globally controllable if it is globally controllable from each x0 ∈ M .
For a system F , unlike the reachable set RF(x0) which accounts only for the positive

time evolution of the trajectories of F , an orbit OF(x0) requires to consider complete vector
fields, i.e. defined on the whole time axis:

OF(x0) = ∪t∈R {x ∈ M s.t. ∃ an input in U such that the evolution of (1)
satisfies x(0) = x0 and x(t) = x t ∈ R}

For both R and O, right invariance of (11) implies RF(x0) = RΓ(e)x0 and OF(x0) = OΓ(e)x0

and thus we can talk indifferently of attainable sets from e of Γ on G and of attainable sets
of F from any x0 ∈ M, x0 6= 0, see [12]. Call RFpc and RFsp the attainable sets of the
polysystem and of the SPC polysystem associated with (1).

When considering right invariant systems on G, an elementary basic necessary condition
for global controllability of any switching scheme is that the Lie group to which the system
F can be lifted has to be connected. For example if we have F ∈ gln(R) then we have to
consider only the component GL+

n (R) of the general linear group.
For the system (1), collecting together the main (well-known) results on controllability

we have:

Theorem 3.1 The bilinear driftless system (1)

(a) is globally controllable from a point x0 ∈ Rn
0 if and only if any of the three equivalent

properties holds:

I. G transitive

II. rank(Lie(F)) = n

III. x0 ∈ int(RF).
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(b) Under the assumption (a), RΓ(e) = OΓ(e) is a group and the associated polysystem
retains the same attainable set: RFpc = RF .

Proof All three items of (a) are classical results, see for example [8, 4, 12]. The first two
were already used above; here we comment only on the item 3. Since RF(x0) = RΓ(e)x0 it
is enough to show that Γ is controllable on a connected G if and only if e is contained in an
interior of RΓ(e) which is a classical result for control systems on Lie groups (see [8] p. 154 or
[13] p. 9). Roughly speaking, if e lies on the boundary of the reachable set then there exists
“forbidden” directions from e and therefore the reachable set is not a group. On the other
hand, controllability implies that the orbit from e is the entire group. Also item (b) is one
of the basic results in control theory, deriving from the orbit theorem. See for example the
book [8], Chapter 2. Its extension to the polysystem is done via the approximation lemma
mentioned in Section 2.1. 2

In the more general case of a system with a drift term OF(x0) is a subgroup but RF(x0)
is only a subsemigroup. The conditions in part (a) of Theorem 3.1 become necessary and
sufficient conditions for accessibility. Necessary and sufficient conditions for controllability
are in general not known; for example the small time local controllability mentioned above
provides a sufficient but not necessary condition for controllability.

The final point reached by the original polysystem and by the SPC polysystem after the
concatenation action are in general different. For the polysystem Fpc with a noncompact
transition matrix Lie group, the limitation to a control set like (7) normally forbids to get
a reachable set which is a group, while a symmetric control set like (8) allows to span the
entire orbits achieving controllability via some form of bang-bang control, when the LARC
is satisfied. This is equivalent to say that the reachable sets of the polysystem and of the
SPC polysystem obtained from it are different. In fact, excluding the compact case, it is not
in general possible to give a group structure to RFsp , not even if the system is driftless and
the LARC is satisfied. Considering the convex hull ”co” of the family F of control vector
fields:

co (F(x0, Vsp)) = F ((x0, co(Vsp))

Since the convex hull of the control set is not a neighborhood of x0, the input vector fields
are not complete. Therefore, unlike for the original polysystem, the accessibility problem for
the SPC polysystem obtained by concatenation is a semigroup problem also in the drift-free
case.

Theorem 3.2 Given the bilinear driftless system (1), the reachable set RFsp of the associated
SPC polysystem Fsp is a subsemigroup of RF : RFsp ⊆ RF .

Proof By Proposition 2.1, the map ~ does not spoil the semigroup structure of the
concatenation. Furthermore, associativity with respect to the flow operation for the SPC
polysystem can be checked directly:

Φ
((

(u1, τ 1)~ ∗ (u2, τ 2)~

)
∗ (u3, τ 3)~

)
= Φ

(
(u1, τ 1)~ ∗

(
(u2, τ 2)~ ∗ (u3, τ 3)~

))
Both sides are ordinary products of exponentials, some of which might have zero exponent.
2
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Corollary 3.1 An endogenous switching system Fsw being a SPC polysystem, its reachable
set RFsw is a semigroup equal to RFsp.

The following comment highlights the difference between the bilinear system (1) and the
corresponding switching system:
Remark: The Lie algebraic properties of the endogenous switching system are uniquely
defined by the vector fields Ai and not by the control parameters.
This is clear if the control set is Vs: ui ∈ {−1, 0, 1} are all is needed to have complete
input vector fields and span {Xi(ui, t), Xi ∈ F , ui ∈ Vs, t ∈ R+} is equivalent to Lie(F).
Admitting any larger control set does not increase the dimension of the linear span of the
Xi. When the control set is Vsp, we have to consider a tangent object which is a convex
cone in the vector space g. The Lie algebraic properties of the family of vector fields are
untouched (although there is a lot to say concerning the relation between the convex cone
and the Lie algebra that contains it, see the book [7] for an overview).

Since for all times at most one of the vector fields is active, the SPC polysystem is
always driven by a scalar control, therefore properties like exact-time controllability or strong
controllability differ from their counterparts on the corresponding bilinear system and will
not be considered here.

In summary then, the main result of the paper can be stated as follows:

Theorem 3.3 If the driftless system (1) satisfies the LARC condition, then

I. as a bilinear system (with space of admissible input functions either U or Upc or Vs)

RF = RFpc = M

II. as a switching system (with space of admissible input functions Vsp)

RFsw ⊆ M

In fact, if instead of the entire Lie algebra of complete vector fields one considers only cones
stable under multiplications by nonnegative coefficients as those generated by our endogenous
switching systems along the inhomogeneous directions, then the LARC condition will only
guarantee RΓsw such that RFsw = RΓswx0 to be a maximal semigroup i.e. a semigroup of G
which is not properly contained in any other proper semigroup of G.

4 Homogeneous switching systems

When a vector field A ∈ Fsw is such that also −A ∈ Fsw, then the orbit of A is a full
one-parameter group and A can be considered a complete vector field. For analogy with the
ordinary control systems, we will call such A a homogeneous vector field. Thus, even with
the control set Vsp, the vector space structure can be recovered with a double number of
infinitesimal generators. We will call homogeneous switching system a system Fsw such that
all A ∈ Fsw are homogeneous.

In the case of a homogeneous family of linear vector fields, the trajectories of the switching
system are exactly those of the scalar polysystem of the corresponding bilinear system.
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Proposition 4.1 The reachable set RFsp of an endogenous homogeneous switching system
is a group.

Proof According to the definition above, all vector fields are complete, therefore the
reachable set is a union of orbits. 2

Corollary 4.1 An endogenous homogeneous linear switching system Fsp is controllable if
and only if it satisfies the LARC condition.

In the following, we subdivide Fsw in homogeneous and inhomogeneous vector fields,
labeled respectively by the index sets Kh and Ki:

Fsw = {Xj | j ∈ K} = {Xj | j ∈ Kh} ∪ {Xj | j ∈ Ki} = Fswh
∪ Fswi

Then A ∈ Fswh
is a complete vector field while B ∈ Fswi

is not, and if we call card(·) the
cardinality of a set (i.e. the number of elements in the set)

2card(Kh) + card(Ki) = card(K)

5 Application: controllability of linear endogenous sys-

tems on semisimple Lie algebras

For details on the (standard) notions on Lie algebras used in this Section the reader is
addressed to the literature, eg. [6, 14]. The simplest possible case of linear endogenous
switching system one can encounter is that of a Lie algebra g generated by the family Fsw,
g = Lie(Fsw), which is abelian. A Lie algebra is said abelian if all the elements of g commute
with respect to the Lie bracket operation. For an endogenous switching system with abelian
Lie algebra, controllability is never an issue: if Fsw = g, then controllability (both local and
global) is assured; if not, there is no way to move along the missing directions.

Here we analyze in detail the more complicated case of semisimple Lie algebras. From
the Levi decomposition, every Lie algebra (and thus Lie algebras of linear vector fields) can
be decomposed into a semidirect product of a semisimple Lie algebra and a solvable one. A
given Lie algebra g is said semisimple if it contains no abelian ideals other than 0. Given
any pair of vector fields A, B in a semisimple Lie algebra g, we have the following generic
result:

Lemma 5.1 (Theorem 12, Ch.6 of [8]) The set of pairs A, B ∈ g such that Lie(A, B) = g

is open and dense in g semisimple.

From Theorem 3.3, Part I, this is enough to affirm that the driftless system F = {A, B} (or
the corresponding Fpc) is globally controllable, while it does not guarantee controllablity on
the corresponding switching system. However, it is necessary to distinguish between compact
and noncompact semisimple Lie algebras. Semisimple Lie algebras are classified according to
the eigenvalues of the Killing form i.e. the symmetric bilinear form K(A, B) = tr(adA ·adB).
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K(·, ·) is always nondegenerate on a semisimple Lie algebra; if all its eigenvalues are negative,
then the Lie algebra is compact (ex. so(n)), otherwise it is noncompact (ex. so(n, m) or sl(n)).

Adapting the result on controllability of semisimple Lie algebras, see [8, 13] to our situa-
tion, we obtain sufficient conditions for global controllability of endogenous switching systems
on semisimple Lie algebras based only on counting the vector fields on K.

Theorem 5.1 Given Fsw such that Lie(Fsw) is semisimple, we have:

I. a sufficient condition for global controllablity of Fsw is that card(Kh) ≥ 2;

II. if Lie(Fsw) is compact, then a sufficient condition for global controllablity of Fsw is
that card(Kh) + card(Ki) ≥ 2;

Both conditions are generic, i.e. hold in an open and dense set of the Lie algebra.

Proof Condition I follows from Lemma 5.1 and then Part I of Theorem 3.3, i.e. it corre-
sponds to having two complete vector fields which are generically generating in a semisimple
Lie algebra. For the compact case, the weaker Condition II is a consequence of the following
fact (see [8], Ch. 6 Lemma 1) which holds for any vector field A in a compact Lie algebra:

cl
(
etA, t < 0

)
⊂ cl

(
etA, t > 0

)
where cl(·) means closure. In fact, a compact Lie algebra does not admit semigroups [7].
Thus also inhomogeneous vector fields generate subgroups in this case and a lower number
of vector fields in K is needed for the sufficient condition to hold. 2

In practice, while the condition card(Ki) = 2 (i.e. K is a collection of two vector
fields) is generically enough to guarantee controllability of g compact, the stronger con-
dition card(Kh) = 2 (i.e. K must contain two pairs of vector fields of opposite signs) is
needed for the noncompact case. It must be noticed that Condition I above can be weak-
ened to card(Ki) = card(Kh) = 1 by studying the root system of g, see [13] for details.
Notice further that small time local controllability requires card(Kh) = 2 regardless of the
character of the semisimple Lie algebra.

6 Conclusion

A switching system can be seen as a collection of differential equations plus a logic mechanism
that allows to switch between them. For endogenous switching systems, the reachability
problem is well-posed and a characterization of the reachable set can be done by using the
analogy endogenous switching system - polysystem - control system. Since linear endogenous
switching systems correspond to driftless bilinear control systems with positive controls, well-
known controllability conditions of the bilinear systems can be reframed to our situation.
The main result is that the reachable set is normally only a semigroup since the switching
logic allows to pass from a vector field to another but not to reverse the direction of motion.
Therefore the Lie algebra rank condition does not assure controllability of the system but
only the weaker accessibility property, like in the case of bilinear systems with drift. Most
of the existing criteria for bilinear systems with drift can be easily adapted to reachability
analysis of switching systems.

14



References

[1] A. A. Agrachev and D. Liberzon. Lie-algebraic conditions for exponential stability of
switched systems. In Proc. of the 38th IEEE Conference on Decision and Control, pages
2679–2684, Phoenix, AZ, 1999.

[2] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Transaction on Automatic Control, 43(4):475–482, 1998.

[3] R. W. Brockett. Lie algebras and Lie groups in control theory. In D. Maine and
R. Brockett, editors, Geometric methods in systems theory, Proc. NATO advanced study
institute. D. Reidel Publishing Company, Dordrecht, NL, 1973.

[4] G. Cheng, T. Tarn, and D. Elliott. Controllability of bilinear systems. In A. Ruberti
and R. Mohler, editors, Variable structure systems, pages 83–100. Springer-Verlag, 1974.

[5] W. Dayawansa and C. Martin. A converse Lyapunov theorem for a class of dynamical
systems which undergo switching. IEEE Trans. on Automatic Control, 44(4):751–760,
1999.

[6] V. Gorbatsevich, A. Onishchik, and E. Vinberg. Structure of Lie groups and Lie al-
gebras. In A. Onishchik and E. Vinberg, editors, Lie groups and Lie algebras III,
Encyclopaedia of Mathematical Sciences. Springer-Verlag, 1994.

[7] J. Hilgert, K. Hoffmann, and J. Lawson. Lie groups, convex cones and semigroups.
Oxford University Press, 1989.

[8] V. Jurdjevic. Geometric Control Theory. Cambridge Studies in Advances Mathematics.
Cambridge University Press, Cambridge, UK, 1996.

[9] V. Jurdjevic and G. Sallet. Controllability properties of affine systems. SIAM J. Control
and Optimization, 22:501–508, 1984.

[10] D. Liberzon and A. S. Morse. Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine, 19:59–70, 1999.

[11] C. Lobry. Dynamical polysystems and control theory. In D. Maine and R. Brockett,
editors, Geometric methods in systems theory, Proc. NATO advanced study institute.
D. Reidel Publishing Company, Dordrecht, NL, 1973.

[12] U. Piechottka and P. Frank. Controllability of bilinear systems: a survey and some new
results. In Proc 1st NOLCOS, pages 23–28, Capri, Italy, July 1989.

[13] Y. Sachkov. Controllability of invariant systems on Lie groups and homogeneous spaces.
Technical report, SISSA International School for Advanced Studies, 1999.

[14] D. Sattinger and D. Weaver. Lie groups and Lie algebras in Physics, Geometry and
Mechanics, volume 61 of Applied Mathematical Series. Springer-Verlag, 1986.

15



[15] H. Sussmann. Lie brackets, real analyticity and geometric control. In R. Brockett,
R. Millman, and H. Sussmann, editors, Differential geometric control theory. Birkhäuser,
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